Eigenvalue Decomposition of a Parahermitian Matrix: Extraction of Analytic Eigenvectors

نویسندگان

چکیده

An analytic parahermitian matrix admits in almost all cases an eigenvalue decomposition (EVD) with eigenvalues and eigenvectors. We have previously defined a discrete Fourier transform (DFT) domain algorithm which has been proven to extract the eigenvalues. The selection of as functions guarantees turn existence unique one-dimensional eigenspaces eigenvectors can exist. Determining such is not straightforward, requires three challenges be addressed. Firstly, subspaces for woven smoothly across DFT bins where non-trivial algebraic multiplicity causes ambiguity. Secondly, defined, phase smoothing aims minimum time support. Thirdly, we need check whether length, thus approximation order, sufficient. propose iterative extraction prove that this converges best set stationary points. provide number numerical examples simulation results, demonstrated ground truth arbitrarily closely.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a genre analytic study of research papers written by bilingual writers and their beliefs: a case of persian-english writers

تحقیق حاضر گزارشی است از تحلیل بخش مقدمه دو دسته از مقالات که عبارتند از: 11 مقاله از دو نویسنده دوزبانه فارسی زبان, که شامل مقدمه 4 مقاله به زبان انگلیسی و چاپ شده در مجلات بین المللی, مقدمه 3 مقاله به زبان انگلیسی و 4 مقاله به زبان فارسی چاپ شده در مجلات داخلی می شود؛ و 12 مقاله از محققان خارجی که در مجله applied linguistics به چاپ رسیده است. مبنای تئوری این تحلیل ها نظریه سوئلز (1990) یا هما...

15 صفحه اول

Hermite Matrix and Its Eigenvalue-based Decomposition

In the MUSIC approach for multiple emitter location, the array covariance matrix is a Hermite matrix. In order to realize the MUSIC approach, we have to do the work of eigenvalue-based decomposition of the Hermite matrix. This paper proves that the problem of Hermite matrix decomposition can be transformed into the problem of real symmetric matrix decomposition, and the article gives the detail...

متن کامل

Joint Eigenvalue Decomposition Using Polar Matrix Factorization

In this paper we propose a new algorithm for the joint eigenvalue decomposition of a set of real non-defective matrices. Our approach resorts to a Jacobi-like procedure based on polar matrix decomposition. We introduce a new criterion in this context for the optimization of the hyperbolic matrices, giving birth to an original algorithm called JDTM. This algorithm is described in detail and a co...

متن کامل

EIGENVECTORS OF COVARIANCE MATRIX FOR OPTIMAL DESIGN OF STEEL FRAMES

In this paper, the discrete method of eigenvectors of covariance matrix has been used to weight minimization of steel frame structures. Eigenvectors of Covariance Matrix (ECM) algorithm is a robust and iterative method for solving optimization problems and is inspired by the CMA-ES method. Both of these methods use covariance matrix in the optimization process, but the covariance matrix calcula...

متن کامل

Face Recognition Using Matrix Decomposition Technique Eigenvectors and SVD

Principle Component Analysis (PCA) is an important and well-known technique of face recognition, where eigenvectors are used. In this paper, we propose a face recognition technique, which combines Eigenvectors with Singular Value Decomposition (SVD) techniques to reduce size of the Eigen-matrix. The detailed theoretical derivation and analysis are presented and a simulation results on Olivetti ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2023

ISSN: ['1053-587X', '1941-0476']

DOI: https://doi.org/10.1109/tsp.2023.3269664